US009258365B2

a2 United States Patent

Cardona et al.

US 9,258,365 B2
Feb. 9, 2016

(10) Patent No.:
(45) Date of Patent:

(54) REMOTE DIRECT MEMORY ACCESS (56) References Cited
ACCELERATION VIA HARDWARE US. PATENT DOCUMENTS
CONTEXT IN NON-NATIVE APPLCIATIONS -
7478373 B2 1/2009 Bond et al.
(71) Applicant: International Business Machines 7.761,619 B2 7/2010 F;Illg :t al.
Corporation, Armonk, NY (US) 8,122,155 Bl 2/2012 Marti
8,161,126 B2 4/2012 Fan
. . 8,233,380 B2 7/2012 Subramanian et al.
(72) Inventors: Omar Cardona, Cedar Park, TX (US); 2005/0038941 Al* 2/2005 Chadalapaka ctal. 710/52
Jimmy R. Hill, Hutto, TX (US); 2005/0149817 Al* 7/2005 Biran et al. .. 714/758
Michael E. Lyons, Round Rock, TX 2006/0136697 Al* 6/2006 Tsao etal. 711/206
2008/0043750 Al* 2/2008 Keelsetal. 370/395.52
(US)
2010/0039010 Al 2/2010 Hong et al.
(73) Assignee: International Business Machines 2010/0057932 AL 312010 .POPe etal.
Corporation, Armonk, NY (US) (Continued)
)) o) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Frey et al.; “Minimizing The Hidden Cost of RDMA”, ICDCS 29th
U.S.C. 154(b) by 252 days. IEEE International Conference on, Jun. 22-26, 2009, pp. 553-560.
(Continued)
(21) Appl. No.: 13/844,458
) Primary Examiner — Wing F Chan
(22) Filed: Mar. 15, 2013 Assistant Examiner — Joseph Maniwang
. L. (74) Attorney, Agent, or Firm — Thomas E. Tyson; Gregory
(65) Prior Publication Data K. Goshorn; Greg Goshorn, PC.
US 2014/0280666 Al Sep. 18, 2014
°p- 2 (57) ABSTRACT
51) Int.CL Provided are techniques generating a data structure, wherein
ques g gad r
GO6F 15/167 (2006.01) the data structure specifies both a specified size of a memory
T04L 29/08 (2006.01) space to allocate within an application and a virtual address
GO6F 9/50 (2006.01) Within. Fhe ap.plicat.ior} to locate a data path transmission
GOG6F 9/54 (2006.01) queue,.ln.cludlng within a verb for allocating .the data path
transmission queue the defined data structure; in response to
GOGF 12/10 (2006.01) L o
(52) US.Cl a call of the verb, allocate, within the application, the data
oo] path transmission queue of the specified size and at the virtual
CPC e Ho4L 67./ 1097 (2013.01); GO6F ?/ 5016 location; in response to a request to transmit control data,
(2013.01); GOGF 9/544 (2013.01); GO6F employ a remote direct memory access (RDMA) transmis-
12/1081 (2013.01) sion path; and, in response to a request to transmit data,
(58) Field of Classification Search employ the data path transmission queue rather than an

CPC ..o GOG6F 12/1081; GOGF 9/544
USPC 709/212
See application file for complete search history.

RDMA transmission path.

18 Claims, 7 Drawing Sheets

280

¥

AP i30

EIREAREES

CONTROL
PATR

25t

UVIVERDS 233

DATA PATI 233 MW SPECIFIC 284

AN

OFED APL 205

USERSVACE 152

CONTROL PA
con Wv(;)lq LESL TN

W SV

KERNELSPACY |34

! ENT/CORE 224

l ROMA/CORE 226 |

{ HW SPECIFIC 220

INTERNET

12

US 9,258,365 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2011/0106905 Al
2012/0054471 Al
2012/0166886 Al*
2012/0216216 Al*
2013/0275631 Al*

5/2011
3/2012
6/2012
8/2012
10/2013

Frey et al.

O’Clair et al.

Shankar et al. 714/43
Lopez Taboada et al. 719/314
Magro etal.cccccoeene. 710/28

OTHER PUBLICATIONS

Metzler, Bernard; “OpenRDMA Software Architecture”, The
OpenRDMA Project, Version 1.0, Dec. 21, 2004, pp. 1-17.

Mellanox Technologies, “RDMA Aware Network Programming
User Manual,” Rev. 1.4, (¢) 2013.

* cited by examiner

U.S. Patent Feb. 9, 2016 Sheet 1 of 7 US 9,258,365 B2

Figure 1

COMPUTING
ARUHITECTURE

{ NG R

M - 104 MONITOR

KEYBOARD
/108

MOUSE
N

woee ooein svons oo oo ik

INTERNEY
128

! INE 118 !

SEBVER
122

COMPUTING
SYSTEM
132

US 9,258,365 B2

Sheet 2 of 7

Feb. 9, 2016

U.S. Patent

SEMAHG TIVNIELYH

Rt

-

wed

OING

4
'

SYADVOTLNE O

AVIIRIY

afs
<~

¥ sunnng

A NNARRARARARRARAR AV AR BO DGO VYV VP CNTNRANNNARRNA AR RRARRP A

KOLLYOVIddY

9FT oY

el
WV

/

v

oo

OF] AOWIw

7 2Ingig

U.S. Patent Feb. 9, 2016 Sheet 3 of 7

Figure 3

KERNEL MEDIATED
COMMURICATION

100
(

T T A s § a APP 130
UBERSPACE 140

KERNELSPACE 138

BUFFER }62

BUFPER 164

L3 166

DRIVER {70

:

MIC 172

i

US 9,258,365 B2

HW 154

U.S. Patent Feb. 9, 2016 Sheet 4 of 7 US 9,258,365 B2

Figure 4

BInia
COMMUNICATION
180

BUEFER 162

LISERSPACE 146

KERNELSPACKE 148

DRIVER 182

| iy

L4 18¢

BNIC 136

;

HW 154

US 9,258,365 B2

Sheet S of 7

Feb. 9, 2016

U.S. Patent

et

LARYALNI

Y

|

oy
o
{ <
o

o

951 AH

Sy

QL HOOVINQY

FOOHAOANA

% SH8SHIOYd
HAs0

e

Lide

reessssse e

{20

THNEEY

A

PR

el HOVASTINGEN

FLCVINCDRIEET

xAs..)M;Y

LT

3

P AV 3340

POC SIHNIOS

J

0T SHSSHOOMT ¥HED

NGLEYOIRRINKOD
G340 HLLEA VRGN

O HOVARYHEN

¢ 231y

US 9,258,365 B2

Sheet 6 of 7

Feb. 9, 2016

U.S. Patent

N
ro
4

¥

o IR

951 Mk

4y

02 1410048 M

ST HADYYIWNAN |} FET 3H00/NY

.».

TN
G40

'y

FET aovas NG

F1T 01410348 MH

PIT VINOEDT

HLVd TOUINGD

FRZ DI4LD54S MU

7 WV L0 e

ZOT ADVASUARN

57 LV VIV

TRE SEATALN

/

£:g

T OR LT dav

HLVd
HRLLROD

A

ROLLVYOIRINNGD
NOLEYOTIddY
BALLVN-NON

g 2131

U.S. Patent

Figure 7

Feb. 9, 2016

Sheet 7 of 7

BEGIN
ESTABLISH
QUELIE

REQUIREMENTS

DETERMINE

HW SIE

30

A.F‘??’i ‘,f,f{f_’;;-‘x.i"f'(’}i {

306

Y

POPULATE
DATA
STRUCTURE

1YL TY
H :{;;E.
by
)

NG

EMPLOY
QUEUE

ENDE
ESTABLISH
QUELIE

319

US 9,258,365 B2

THROW
EXCEPTION

US 9,258,365 B2

1
REMOTE DIRECT MEMORY ACCESS
ACCELERATION VIA HARDWARE
CONTEXT IN NON-NATIVE APPLCIATIONS

FIELD OF DISCLOSURE

The claimed subject matter relates generally to computing
services and, more specifically, to providing non-native appli-
cations enhanced access to remote direct memory access
(RDMA) operations.

BACKGROUND OF THE INVENTION

Remote direct memory access (RDMA) is amechanism for
direct memory access communication from a userspace to
remote memory resources. One standard for RDMA is Open-
Fabrics Enterprise Distribution (OFED), which is written to
be C/C++ compatible. Applications written in higher level
languages such as JAVA® are typically required to translate
native verbs to OFED verbs via tools such as JAVA® native
interface (JNI). Such applications are typically be written
against backward compatible application programming inter-
faces (APIs) such as Sockets Direct protocol (SDP), Internet
Small Computer System Interface (iSCSI) extension for
RDMA (iSER), Small Computer System Interface (SCSI)
RDMA protocol (SRP), Network File System (NFS) over
RDMA (NFSoRDMA) and so on.

SUMMARY

As the Inventors herein have realized, current approaches,
such as those described above for enabling a higher level
language such as JAVA® access to RDMA, present some
disadvantages. For example, current approaches incur a ker-
nel context switch cost and tend to provide no statistically
significant benefit with respect to small messages. Therefore,
small messages are typically addressed via a copy whereas
large messages are registered on-the-fly when the registration
cost is outweighed by the benefit of large data transfers.

Provided are mechanisms whereby an application written
in any language can access the highest theoretical perfor-
mance of an underlying RDMA device, including small mes-
sage transfers. Non-native applications seeking the lowest
latency can perform hardware (HW) context specific opera-
tions natively when a translation cost outweighs latency
requirements. The disclosed technology optimizes the devel-
opment of non-native applications for exploiting RDMA.

One focus of the disclosed technology is optimizing the
development of non-native applications for exploitation of
RDMA. For example, as the Inventors herein have realized,
when jVerbs develops a user space component in JAVA®,
there is a high cost for the development and maintenance
effort. This disclosure describes techniques that may bound
the development overhead for such applications to a mini-
mum. This is achieved by having an application perform
control path operations via standard calls through JNI or
similar translations such that development and maintenance
cost for the jVerbs application is primarily in the datapath. A
significant reduction in development and operational cost is
thus realized as the application is then primarily responsible
for HW specific descriptor encoding/decoding.

Provided are techniques generating a data structure,
wherein the data structure specifies both a specified size of a
memory space to allocate within an application and a virtual
address within the application to locate a data path transmis-
sion queue; including within a verb for allocating the data
path transmission queue the defined data structure; in

10

15

20

25

30

35

40

45

50

55

60

65

2

response to a call of the verb, allocate, within the application,
the data path transmission queue of the specified size and at
the virtual location; in response to a request to transmit con-
trol data, employ a remote direct memory access (RDMA)
transmission path; and, in response to a request to transmit
data, employ the data path transmission queue rather than an
RDMA transmission path.

This summary is not intended as a comprehensive descrip-
tion of the claimed subject matter but, rather, is intended to
provide a brief overview of some of the functionality associ-
ated therewith. Other systems, methods, functionality, fea-
tures and advantages of the claimed subject matter will be or
will become apparent to one with skill in the art upon exami-
nation of the following figures and detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the claimed subject matter can be
obtained when the following detailed description of the dis-
closed embodiments is considered in conjunction with the
following figures.

FIG. 1 is a block diagram of a computing system architec-
ture that may implement the claimed subject matter.

FIG. 2 is a block diagram of a computing system, first
introduced in FIG. 1, in greater detail.

FIG. 3 is a block diagram illustrating kernel mediated
communication.

FIG. 4 is a block diagram illustrating remote direct
memory access (RDMA), or “direct access,” communication.

FIG. 5 is a block diagram illustrating RDMA with Open-
Fabrics Enterprise Distribution (OFED) communication.

FIG. 6 is a block diagram illustrating Non-Native Applica-
tion communication (NNAC) in accordance with the claimed
subject matter.

FIG. 71is aflowchart of one example of a “Establish Queue”
process that implements aspects of the claimed subject mat-
ter.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic

US 9,258,365 B2

3

storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational actions
to be performed on the computer, other programmable appa-
ratus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for

10

15

20

25

30

35

40

45

50

55

60

65

4

implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Turning now to the figures, FIG. 1 is a block diagram of a
computing architecture 100 that may implement the claimed
subject matter. A computing system 102 includes a central
processing unit (CPU) 104, coupled to a display 106, a key-
board 108 and a pointing device, or “mouse,” 110, which
together facilitate human interaction with elements of archi-
tecture 100 and computing system 102. Also included in
computing system 102 and attached to CPU 104 is a com-
puter-readable storage medium (CRSM) 112, which may
either be incorporated into client system 102 i.e. an internal
device, or attached externally to CPU 104 by means of vari-
ous, commonly available connection devices such as but not
limited to, a universal serial bus (USB) port (not shown).
CRSM 112 is illustrated storing an operating system (OS)
114, a JAVA® native interface (JNI) 116 and an application
118 that is configured in accordance with the claimed subject
matter. Components 114, 116 and 118 and their relationship
with the claimed subject matter are described in more detail
below in conjunction with FIGS. 2-7.

Computing system 102 and CPU 104 are connected to the
Internet 120, which is also connected to a server computer, or
simply “server.” 122. Server 122 is coupled to a CRSM 124.
Computing system 102 is also coupled to a local area network
130, which is coupled to a second computing system 132.
Computing system 132 is coupled to a CRSM 134. Although
in this example, computing system 102 and server 122 are
communicatively coupled via the Internet 120, they could
also be coupled through any number of communication medi-
ums such as, but not limited to, a LAN such as LAN 130. In
the following description, application 118 is used as one
example of a program that may take advantage of the dis-
closed technology. It should be noted there are many possible
configurations of computing system architectures and com-
puting systems that may implement the claimed subject mat-
ter, of which architecture 100 and computing system 102 are
only simple examples.

FIG. 2 is a block diagram of computing system 102, first
introduced in FIG. 1, in greater detail. As shown in FIG. 1,
computing system 102 is illustrated in the form of a general-
purpose computing device. In this example, components of
computing system 102 include, but are not limited to, CPU
104 (FIG. 1), which may include one or more processors (not
shown), a system bus 132, which couples various components
to CPU 104, including but not limited to, input/output (I/O)
interfaces 134, a Remote Direct Memory Access (RDMA)
network interface card (RNIC) 136 and memory 140. In this
example, RNIC 135 provides a communication path between
computing system 102 and the Internet 120 (FIG. 1) and
could also provide a connection to LAN 130 (FIG. 1) or other
networks and resources. I/O interfaces 134 enable various
components to be coupled to computing system 102 such as
display 106 (FIG. 1) and external devices 138. In this
example, external devices 138 may include keyboard 108
(FIG. 1) and mouse 110 (FIG. 1).

Bus 132 represents one or more of any of several types of
bus structures, which for the sake of simplicity are not shown,
including a memory bus or memory controller, a peripheral
bus, an accelerated graphics port, and a processor or local bus
using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Indus-
try Standard Architecture (ISA) bus, Micro Channel Archi-
tecture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec-
tronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

US 9,258,365 B2

5

Memory 140 typically includes a variety of computer sys-
tem readable media. Such media may be any storage media
that is accessible CPU 104 via bus 132 and includes both
volatile and non-volatile media. Computing system 102 and
memory 140 may also further include other volatile/non-
volatile computer system storage media. In this example,
memory 140 includes random access memory (RAM) 142
and cache memory, or simply “cache,” 144. RAM 142 is
illustrated as separated into user space 146 and kernel space
148. RAM 142 is also illustrated storing in user space 146, an
application 150, which is a copy of program 118 (FIG. 1)
stored on CRSM 112 (FIG. 1). In other words, program 150
corresponds to logic associated with program 118 that has
been loaded into RAM 142 for execution on CPU 104. Pro-
gram 150 may be stored in one or more locations in memory
140, including RAM 142, which includes user space (US)
144 and kernel space (KS) 146 and may also be paged out to
other storage media such as, but not limited to CRSM 112.
Within kernel space 146 are buffers 148. Possible compo-
nents of buffers 148 are explained below in conjunction with
FIGS. 3 and 4.

FIG. 3 is a block diagram illustrating kernel mediated
communication 160 that may be employed in conjunction
with the claimed subject matter. As shown above in FIG. 2,
application 150 (FIG. 2) is loaded into user space 144 (FIG. 2)
of memory 140 (FIG. 2). Application 150 includes a buffer
162 that is employed in conjunction with a buffer 164 in
kernel space 146 (FIG. 2). Buffer 164 is associated with
layers of an Open Systems Interconnection (OSI) stack. i.e.,
an .3 166 and an [.4 168. Coupled to bufter 164, 1.3 166 and
L4168 is adriver 170. Driver 170 controls the transfer of data
between buffer 164, 1.3 166 and [.4 168 and, in this example,
a network interface card (NIC) 172. NIC 172 handles com-
munication between kernel space 148 and a hardware space
154 and device (not shown) that might be in hardware space
154, such as, but not limited to, CRSM 112 (FIG. 1).

Kernel mediated communication 160 is typically multi-
plexed with both protocol and buffer 164, 1.3 166 and .4 168
controlled by a host CPU, which in the example is CPU 104
(FIGS. 1 and 2). Such a configuration provides low band-
width for small messages and a high power consumption cost.
Contention among shared resources is typically controlled by
use of buffer 164, 1.3 166 and [.4 168 and locks (not shown).
One feature of kernel mediated communication 160 is that
First Failure Data Capture (FFDC) is readily available.

Although the use of buffers and NICs should be familiar to
those with skill in the relevant arts, the claimed subject matter
necessitates that buffers 162 and 164 and NIC 172 be modi-
fied and that .2 166 and L3 168 be newly designed. In other
words, new mechanisms tar kernel buffer and protocol man-
agement are needed to use RDMA in conjunction with the
claimed subject matter. Modifications in accordance with the
claimed subject matter are explained in more detail below in
conjunction with FIGS. 5-7.

FIG. 4 is a block diagram illustrating RDMA communica-
tion 180 that may be employed in conjunction with the
claimed subject matter. As shown above in FIGS. 2 and 3,
application 150 (FIG. 2) is loaded into user space 146 (FIG. 2)
of memory 140 (FIG. 2). Application 150 also includes buffer
162 (FIG. 3). In this configuration, buffer 162 is coupled with
two (2) cache buffers associated with a RNIC 136 (FIG. 2),
i.e.an[.3 184 and an [.4 186 in kernel space 148. A driver 182
is employed to control RNIC 136.

In contrast to kernel mediated communication 160, RDMA
communication 180 has lower memory bus 132 (FIG. 2)
bandwidth consumption, higher bandwidth for small mes-
sage sizes, lower utilization of CPU 104 (FIGS. 1 and 2),

10

15

20

25

30

35

40

45

50

55

60

65

6

lower power consumption and higher processing system
capacity. However, RDMA communication 180 has a one-
sided data placement mechanism and there is no FFDC
readily available for .3 184 and 1.4 186. The claimed subject
matter necessitates that buffer 162 and RNIC 136 be modified
and that cache buffers 184 and 186 be newly designed. Modi-
fications in accordance with the claimed subject matter are
explained in more detail below in conjunction with FIG. 7.

FIG. 5 is a block diagram illustrating RDMA with OFED
communication 200. User processes 202 in user space 152
(FIGS. 2-4), such as, but not limited to, a user direct access
programming library (UDAPL) and a message passing inter-
face (MPI), employs sockets 204 and an OFED application
programming interface (API) 206 to communicate with other
components in user space 152 and kernel space 154 (FIGS.
2-4). Sockets 204 provides connections to a common data
link interface (CDLI) 210 and an address resolution protocol
component (ARP) 212, both of which are in kernel space 154.
OFED API 206 may include elements such as, but not limited
to, “libibverbs,” which is a library that allows user space 152
processes to use RDMA verbs, and “librdmacm,” which is a
library that allows applications to set up reliable connected
and unreliable datagram transfers when using RDMA adapt-
ers (not shown). OFED API 206 provides connections to a
RDMA library (1ibRDMA) 214, which is in user space 152
and via a control and data path 207 to an OFED kernel 216,
which is in kernel space 154. Although in a typical implemen-
tation, libBRDMA 214 and a HW specific library, or simply
“HW specific,” 218 would be a single module, in accordance
with the claimed subject matter, components 214 and 218 are
separated into two different components, with ibRDMA 214
being hardware agnostic beyond standard OFED interfaces
and HW specific 218 being self-descriptive. LibRDMA 214
employs HW specific 218 to facilitate communication with
HW specific drivers 220 in kernel space 154 via a data path
219.

User processes 222, such as hut not limited to a kernel
direct access programming library (kDAPL), a session
description library (SDP) and Internet Small Computer Sys-
tem Interface (iISCSI) extensions for RDMA (iSER), also
access MID kernel 216. CDLI12210 access HW specific driv-
ers 220 via an ent/core 224. OFED kernel 216 access HW
specific drivers 220 via a RDMA/core 226. Finally, HW spe-
cific drivers 220 provide access, in this example, to RNIC 136
(FIGS. 2 and 4) in HW 156 and thereby access to Internet 120
(FIG. 1) and LAN 130 (FIG. 1). The claimed subject matter
necessitates that ent/core 224 and HW specific 220 be modi-
fied and that librdrma 214, HW specific 218 and RDMA/core
226 be newly designed. Modifications in accordance with the
claimed subject matter are explained in more detail below in
conjunction with FIG. 7.

FIG. 6 is a block diagram illustrating non-native applica-
tion communication (NNAC) 250 in accordance with the
claimed subject matter. Like FIG. 5 and RDMA with OFED
communication 200, FIG. 6 and NNAC 250 include the ele-
ments internet 120, LAN 130, RNIC 136, user space 152,
kernel space 154, HW space 156, OFED API 206, libRDMA
214, OFED kernel 216, HW specific 218, HW specific 220,
ent/core 224 and RDMA/core 226.

In this example, ulverbs 252 access HW specific 254 via a
data path 253 and OFED API 206 via a control path 253.
OFED API 206 accesses libRDAM 214 via a control path
255. In other words, rather than a single path 207 (FIG. 5) for
both control and data messages, there are different paths 251
and 253 for data and control messages, respectively. In this
manner, an application (not shown) may perform control path
operations via standard calls through JNI or similar transla-

US 9,258,365 B2

7

tions such that development and maintenance cost for a
jVerbs application is primarily in the datapath. A significant
reduction in development and operational cost is thus realized
as the application is then primarily responsible for HW spe-
cific descriptor encoding/decoding.

To implement this technology, an application, which in this
example is app 150 (FIGS. 2-4) is provided means to generate
application specific memory within app 150 memory space,
specifically a Send Queue (SQ) 262, a Received Queue (RQ)
and a Completion Queue (CQ) 266.

The flowing CODE EXAMPLE 1 illustrates modifications
to a standard ibv_cq data structure, used as input to various
verbs that control CQ 266 by enabling attributes of CQ 266 to
be defined:

1) struct iby__cq *(*create__app__cq)

2) (struct iby__context *p__context,

3) int32_t cqe,

4) struct iby__comp__channel *p__channel,
5) int32_t comp__vector,
6) struct app__cq__attrs *p__app__attrs);

In the example above, line 6 has been added to define
attributes associated with CQ 266. Extensions to the verb
“ibv_create_cq” are then added to enable a caller to provide a
specific size and virtual address corresponding to the CQ 266
when it is created. In addition, specific verbs, e.g. JAVA®
jVerbs, that are modified in this example to take advantage of
the modified data structure, iby_cq, described above, include
but are not necessarily limited to: ibv_create_cq, ibv_poll_cq,
ibv_req_notify_cq and ibv_cq_event.

Line 4 of the following CODE EXAMPLE 2 illustrates
additions to a standard iby_gp structure used as inputs to
verbs that control SQ 262 and RQ 262 by enabling attributes
associated with SQ 262 and RQ 264 to be defined:

1) struct iby__qp *(*create_app__qp)

2) (struct iby__pd *p_pd,
3) struct iby__qp__init_ attr *p__attr,
4) struct app__qp__attrs app__attrs);

In this manner, app 150 may control the creation of SQ 262,
RQ 264 and CQ 266. Extensions to the verb “ibv_create_qp”
are then added to enable a caller to provide a specific size and
virtual address corresponding to the SQ 262 and RQ 264
when they are created. In addition, specific verbs that are then
modified in this example to take advantage of the modified
data structure, iby_qp, described above, include but are not
necessarily limited to: ibv_post_srq_recv, ibv_create_qp,
ibv_post_send and ibv_post_recv. It should be understood
that, in conjunction with control in accordance with the dis-
closed technology, app 150 also becomes responsible for
memory alignment and size requirements for the specific
hardware involved.

FIG.7is aflowchart of one example of a “Establish Queue”
process 300 that implements aspects of the claimed subject
matter. In this example, aspects of process 300 are associated
with logic stored on CRSM 112 (FIG. 1) and executed on
CPU 104 (FIGS. 1 and 2).

Process 300 starts in a “Begin Establish Queue” block 302
and proceed immediately to a “Determine Hardware (HW)
Size Requirements™ 304. During processing associated with
block 304, a determination is made as to the size of queue
need for a particular hardware device for which a queue is to
be created. During processing associated with a “Determine
Location in Application” block 306, a determination is made

10

15

20

25

30

35

40

45

50

55

60

65

8

as to a particular location within an applications memory
space that may be utilized by the queue being established. In
one embodiment, information about both the size and the
location of the queue to be created may be supplied by the
application. During processing associated with a “Populate
Data Structure” block 308, a data structure is generated to
store the values calculated during processing associated with
blocks 304 and 306. In this example, if the queue being
generated is a control queue the “app_cq_attrs” structure,
shown above at line 6 of CODE EXAMPLE 1, is populated.
If the queue being generated is a control queue the “app_g-
p_attrs” structure, shown above at line 4 of CODE
EXAMPLE 2, is populated.

During processing associated with a “Call Queue Create”
block 310, the data structure populated during processing
associated with block 308 is included in a call to a function to
create a queue as in CODE EXAMPLE 3 above. During
processing associated with a “Creation Successful?” block
312, a determination is made as to whether or not the call
made during processing associated with block 310 was suc-
cessful. If not, control proceeds to a “Throw Exception” block
314. During processing associated with block 314 appropri-
ate measures are taken to notify the administrator that initi-
ated process 300 is notified so that remedial actions may be
taken. In one embodiment, a JAVA native interface (JNI)
callback is employed. If queue creation was successful, con-
trol proceeds to an “Employ Queue” block 316. During pro-
cessing associated with block 316, the created queue is used
for its intended purpose. Finally, control proceeds to an “End
Establish Queue” block in which process 300 is complete.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted

US 9,258,365 B2

9

in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

We claim:

1. A method, comprising:

generating a data structure, wherein the data structure
specifies both a specified size of a memory space to
allocate within an application and a virtual address
within the application to locate a data path transmission
queue;

including within a verb for allocating the data path trans-
mission queue the defined data structure;

in response to a call of the verb, allocating, within the
application, the data path transmission queue of the
specified size and at the virtual location;

in response to a request to transmit control data, employing
a remote direct memory access (RDMA) transmission
path;

in response to a request to transmit data, employing the
data path transmission queue rather than an RDMA
transmission path.

2. The method of claim 1, wherein the data path transmis-
sion queue is a queue pair consisting of a send queue and a
receive queue.

3. The method of claim 1, wherein the data path transmis-
sion queue is a completion queue.

4. The method of claim 1, wherein the verb is a JAVA®
jVerb.

5. The method of claim 1, wherein the application provides
contiguous memory allocation and byte alignments.

6. The method of claim 1, wherein in response to an error a
JAVA native interface (JNI) callback is called.

7. An apparatus, comprising:

a processor;

a non-transitive computer-readable storage medium

(CRSM) coupled to the processor;
a data structure, wherein the data structure specifies both a
specified size of a memory space to allocate within an
application and a virtual address within the application
to locate a data path transmission queue; and
logic, stored on the CRSM and executed on the processor,
for:
including within a verb for allocating the data path trans-
mission queue the defined data structure;

in response to a call of the verb, allocating, within the
application, the data path transmission queue of the
specified size and at the virtual location;

10

15

20

25

30

35

40

45

50

10

in response to a request to transmit control data, employ-
ing a remote direct memory access (RDMA) trans-
mission path;

in response to a request to transmit data, employing the
data path transmission queue rather than an RDMA
transmission path.

8. The apparatus of claim 7, wherein the data path trans-
mission queue is a queue pair consisting of a send queue and
a receive queue.

9. The apparatus of claim 7, wherein the data path trans-
mission queue is a completion queue.

10. The apparatus of claim 7, wherein the verb is a JAVA®

jVerb.

11. The apparatus of claim 7, wherein the application pro-
vides contiguous memory allocation and byte alignments.

12. The apparatus of claim 7, wherein in response to an
error a JAVA® native interface (JNI) callback is called.

13. A computer programming product, comprising:

a non-transitive computer-readable storage medium

(CRSM); and

logic, stored on the CRSM for execution on a processor,

for:

generating a data structure, wherein the data structure
specifies both a specified size of a memory space to
allocate within an application and a virtual address
within the application to locate a data path transmis-
sion queue; and

including within a verb for allocating the data path trans-
mission queue the defined data structure;

in response to a call of the verb, allocating, within the
application, the data path transmission queue of the
specified size and at the virtual location;

in response to a request to transmit control data employ-
ing a remote direct memory access (RDMA) trans-
mission path;

in response to a request to transmit data, employing the
data path transmission queue rather than an RDMA
transmission path.

14. The computer programming product of claim 13,
wherein the data path transmission queue is a queue pair
consisting of a send queue and a receive queue.

15. The computer programming product of claim 13,
wherein the data path transmission queue is a completion
queue.

16. The computer programming product of claim 13,
wherein the verb is JAVA® jVerb.

17. The computer programming product of claim 13,
wherein the application provides contiguous memory alloca-
tion and byte alignments.

18. The computer programming, product of claim 13,
wherein in response to an error a JAVA® native interface
(JNI) callback is called.

#* #* #* #* #*

